

3

1. Introduction

What are "**consolidation**" and "**settlement**"? We need to know "*saturated soil*" first. **Saturated soil** is a mix of "incompressible" soil particles and their voids fully filled by "incompressible" water

We need to know "Effective Stress Principle" and equation:

Effective stresses control both **deformation** and **shear resistance** (or shear strength) since effective stresses reflect soil particle interaction. Why?

• Test data proof ? > see this later.

Zdravkovic, L. & Carter, J. (2008). Contributions to Geotechnique **1948–2008**: Constitutive and numerical modelling. **Geotechnique** 58, No. 5, 405–412.

"This paper reviews some of **the main milestones** in the evolution of geotechnical analysis in the past 60 years, commenting, where appropriate, on what problems still lie ahead."

"However, it is the model of Yin & Graham (1996), which introduces *the equivalent time concept*, that makes a step forward in modelling creep. Although this paper showed model development for one-dimensional consolidation only (a complete model was published later, but not in Geotechnique), it assumed that the total strain consists of elastic and viscoplastic parts. *The use of equivalent time allows the model to have stress–strain-equivalent time states independent of stress path* (*i.e.* total strain rate is equal to creep strain rate). The model also introduces the limit time line, which helps to model soils that do not experience creep: that is, if the equivalent time is set to be very large (infinity), the creep rate will be equal to zero."

Zdravkovic, L.: Professor in Imperial College, UK Carter, J P: Former Vice-President (R&D) of The University of Newcastle, Australia

27 CEE Scho	olars Ranked in "Wor	ld's		CEE	Schola Re	ars R Iease	anke d bv	d Worl Stanfo	d's Top rd Univ	o 2% Sc versitv	ientis	its	
Top 2% Scien	ntists" in 2021 Relea	sed t	by 🖉			louoo	~~y	e canne		Jonenay			
Stanford Uni	versity (25 Nov 2021)			Den Barlar In	Contra la				No. Comp Man Fa	Pot la serba		No barw
The full list in 2	2020 can be downloaded:												
https://journals.p 1371/journal.pbi	blos.org/plosbiology/articl io.3000918	e?id=	10.				No tra	Ni la Yanki	No to anno	D'R Dark	Not have been	NIT	Ni Isi ka
Authoir Name	Institute Name	Country	Number f	firstyr	lastyr	Subjec	t Field			Rank with	in field	Total au	thors v
Randolph, Mark F.	University of Western Australia	aus	497	1975	2020	Geolo	gical &	Geomat	cs Engine		5	4	44176
Sloan, Scott William	University of Newcastle, Australia	aus	360	1980	2020	Geolo	gical &	Geomat	cs Engine		18	4	44176
Rowe, R. Kerry	Queen's University, Kingston	can	419	1978	2019	Geolo	gical &	Geomat	cs Engine		19	4	44176
Fredlund, Delwyn G.	Golder Associates Ltd.	can	282	1972	2020	Geolo	gical &	Geomat	cs Engine		21	4	44176
Iverson, Richard M.	United States Geological Survey	usa	85	1954	2019	Geolo	gical &	Geomati	cs Engine		24	4	44176
Cundall, Peter	Itasca Consulting Group, Inc.	usa	65	1975	2020	Geolo	gical &	Geomat	cs Engine		26	4	44176
Houlsby, Guy T.	University of Oxford	gbr	220	1979	2020	Geolo	gical &	Geomati	cs Engine		30	4	44176
Dafalias, Yannis F.	University of California, Davis	usa	180	1975	2020	Geolo	gical &	Geomat	cs Engine		31	4	44176
Barton, Nick	Nick Barton and Associates	nor	190	1971	2020	Geolo	gical &	Geomat	cs Engine		33	4	44176
Indraratna, Buddhima	University of Wollongong	aus	522	1987	2020	Geolo	gical &	Geomati	cs Engine		40	4	44176
Seed, H. B.	University of California, Berkeley	usa	119	1970	2017	Geolo	gical &	Geomat	cs Engine		46	4	44176
Bolton, M. D.	University of Cambridge	gbr	204	1978	2018	Geolo	gical &	Geomati	cs Engine		47	4	44176
Poulos, Harry G.	The University of Sydney	aus	278	1967	2018	Geolo	gical &	Geomati	cs Engine		51	4	44176
Zhao, J.	Monash University	aus	321	1991	2020	Geolo	gical &	Geomati	cs Engine		52	4	44176
Borja, Ronaldo I.	Stanford University	usa	151	1985	2020	Geolo	gical &	Geomat	cs Engine		58	4	44176
Hungr, Oldrich	The University of British Columbia	can	96	1978	2018	Geolo	gical &	Geomati	cs Engine		63	4	44176
Ishihara, Kenji	Chuo University	jpn	175	1962	2018	Geolo	gical &	Geomati	cs Engine		64	4	44176
Hoek, E.	Gas Engineering Consultant	can	68	1965	2019	Geolo	gical &	Geomati	cs Engine		65	1	44176
Han, J.	University of Kansas, Lawrence	usa	557	1986	2020	Geolo	gical &	Geomat	cs Engine		66	1	44176
Wood, David Muir	University of Dundee	gbr	152	1972	2019	Geolo	gical &	Geomat	cs Engine		67	4	44176
Ng, C. W.W.	Hong Kong University of Science and	hkg	486	1991	2020	Geolo	gical &	Geomati	cs Engine	2	73		44176
Yin, Jian Hua	Hong Kong Polytechnic University	hkg	321	1988	2020	Geolo	gical &	Geomati	cs Engine	2	88	4	44176
Zhang L M	Hong Kong University of Science and	hka	627	1007	2020	Carla		Comment					44176

authfull	inst_name	cntry	sm-subfield-1	rank sm-s	sm-subfie
Randolph, Mark F.	The University of Western	aus	Geological & Geomatics Engineering	6	52,403
Sloan, Scott W.	The University of Newcast	aus	Geological & Geomatics Engineering	16	52,403
Lade, Poul V.	University of California, Lo	usa	Geological & Geomatics Engineering	17	52,403
Rowe, R. K.	Queen's University	can	Geological & Geomatics Engineering	19	52,403
Fredlund, Delwyn G.	University of Saskatchewa	can	Geological & Geomatics Engineering	20	52,403
Iverson, Richard M.	United States Geological S	usa	Geological & Geomatics Engineering	24	52,403
Cundall, Peter	Itasca Consulting Group, Ir	usa	Geological & Geomatics Engineering	28	52,403
Dafalias, Yannis F.	National Technical Univers	grc	Geological & Geomatics Engineering	31	52,403
Indraratna, Buddhima	University of Technology S	aus	Geological & Geomatics Engineering	32	52,403
Houlsby, G. T.	University of Oxford	gbr	Geological & Geomatics Engineering	34	52,403
Zhao, Jian	Monash University	aus	Geological & Geomatics Engineering	41	52,403
Barton, Nick	Nick Barton and Associate	nor	Geological & Geomatics Engineering	44	52,403
Bolton, M. D.	University of Cambridge	gbr	Geological & Geomatics Engineering	49	52,403
Ng, Charles Wang Wai	Hong Kong University of S	hkg	Geological & Geomatics Engineering	55	52,403
Borja, Ronaldo I.	Stanford University	usa	Geological & Geomatics Engineering	56	52,403
Hungr, Oldrich	The University of British Co	can	Geological & Geomatics Engineering	61	52,403
Phoon, Kok Kwang	National University of Sing	sgp	Geological & Geomatics Engineering	63	52,403
Poulos, Harry	The University of Sydney	aus	Geological & Geomatics Engineering	65	52,403
Xie, Heping	Shenzhen University	chn	Geological & Geomatics Engineering	66	52,403
Hoek, E.	Gas Engineering Consultar	can	Geological & Geomatics Engineering	67	52,403
Wood, David Muir	University of Dundee	gbr	Geological & Geomatics Engineering	70	52,403
Ishihara, Kenji	Chuo University	jpn	Geological & Geomatics Engineering	72	52,403
Han, J.	The University of Texas at	usa	Geological & Geomatics Engineering	73	52,403
Huang, Run Qiu	Chengdu University of Tec	chn	Geological & Geomatics Engineering	76	52,403
He, Man Chao	China University of Mining	chn	Geological & Geomatics Engineering	82	52,403
Yin, Jian Hua	Hong Kong Polytechnic Un	hkg	Geological & Geomatics Engineering	84	52,403
Michalowski, Radoslaw L.	University of Michigan, An	usa	Geological & Geomatics Engineering	88	52,403
Zhang, L. M.	Hong Kong University of S	hkg	Geological & Geomatics Engineering	90	52.403

YIN J-H. and GRAHAM J.(1989). Viscous elastic plastic modelling of one-dimensional time dependent behaviour of clays. Canadian Geotechnical Journal, 1989,26:,199 - 209.

- YIN J H. and GRAHAM J. (1994). Equivalent times and elastic visco-plastic modelling of time-dependent stress-strain behaviour of clays. Canadian Geotechnical Journal, 1994,31: 42 52.
- YIN J H. and GRAHAM J. (1996). Elastic visco-plastic modelling of one-dimensional consolidation. Geotechnique, 1996, 46(3): 515 - 527.
- Zhu, G.F., Yin, J.H., and Graham, J. 2000. Consolidation modelling of soils under the test embankment at Chek Lap Kok International Airport in Hong Kong using a simplified finite element method", Canadian Geotechnical Journal, Vol.38, No.2, 349-363.
- Yin, JH (2011). "From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies", Chinese J of Geotechnical Engineering, 33(1), 1~15. (14th "Huang Wen-Xi Lecture" in China in 2011).

Difficulties of using this "rigorous嚴格的" Hypothesis B Method:

- (a) Numerical methods and programs (software) are needed.
- (b) Knowledge and experience are needed.

Numerical methods and software:

- (a) Finite difference method (Yin and Graham 1996).
- (b) Finite element method and software (examples) below,
 - (i) Plaxis 2D and 3D for consolidation modelling and a soft soil creep model,
 - (ii) "Consol" developed by Zhu and Yin (2000).

Can we have a "simplified" Hypothesis B method by using spread-sheet calculation? Answer is yes!

 $S_{totalB} = \begin{cases} U_{v}S_{f} + \alpha S_{creep,f} & for \ 1 \ day \le t \le t_{EOP,field} \\ U_{v}S_{f} + [\alpha S_{creep,f} + (1-\alpha)S_{creep,d}] & for \ t \ge t_{EOP,field} \end{cases}$ Creep of soils $S_{\rm creep,d}$ is called "delayed creep settlemwent" similar to the "seondary" How to calculate compression settlement starting at $t_{EOP, field}$ (Use U v = 98% to find $t_{EOP, field}$). $S_{creep,d}$: $S_{creep,d}$ is called "delayed creep settlement". "Delayed" means that $S_{creep,d}$ will occur at time $t_{EOP, field}$ at $U_v = 98\%$. $S_{creep,d}$ is related to $S_{creep,f}$ in all above cases, but calculated as below (delayed by time of $t_{EOP, field}$). How to calculate S_{creep,d} for any point in normal consolidation (NC) state? For NC state, e.g. from Point1 to Point 4: $S_{creep,f} = \frac{C_{\alpha e}}{1+e} \log(\frac{t_e + t_e}{t}) H$ $t_e \ge 0$ $S_{creep,d} = \frac{C_{\alpha e}}{1 + e_o} \log(\frac{t_o + t_e}{t_o + t_{e,EOP,field}}) H \quad for \ t_e \ge t_{e,EOP,field}$ (1) $:: t_e = t - t_o; :: t_{e,EOP,field} = t_{EOP,field} - t_o \qquad (t is the time from starting loading)$ $Replace: t_e = t - t_o \quad and \quad t_{e, EOP, field} = t_{EOP, field} - t_o$ into Eq(1)We have : $S_{creep,d} = \frac{C_{\alpha e}}{1 + e_o} \log(\frac{t}{t_{EOP, field}}) H \quad for \quad t \ge t_{EOP, field}$ (2) Eq(2) is the same as the secondary consolidation equation. 46

Equation	of Hypo	thesis A N	/lethod (a	n old de-	coupled n	nethod):				
$S_{totalA} = S_{*primary^{*}} + S_{*secondary^{*}} = \begin{cases} U_{v}S_{f} + \frac{C_{ae}}{1 + e_{o}}\log(\frac{t}{t_{EOP,field}})H & for \ t \ge t_{EOP,field} \end{cases}$										
$C_n = C_n$	<i>C</i> .	σ_{m}	$C_{\alpha} = C_{\alpha \alpha}$	e _n	С.	Use $U_{y} = 98$	% to find t_{EOP}	P, field		
(no unit)	(no unit)	(kPa)	(no unit)	(no unit)	(m ² /year)	$C_{\alpha} \sim OCR \text{ or } \sigma'_{zp} ? \text{ or creep tests at different } OC$ $OCR = \sigma'_{zp} / \sigma'_{z}$				
Equation	of Simpl	ified Hyp	othesis B	8 Method	(a new de	-coupled	method):			
$S_{vect/P} = S_{vect/P} + S_{evec} = \begin{cases} U_v S_f + \alpha S_{creep,f} & \text{for } 1 day \le t \le t_{EOP, field} \end{cases}$										
In normal co	nsolidation ($[U_v S_f + NC]$ state :	$\lfloor \alpha S_{creep,f} +$	$(1-\alpha)S_{creep}$	_{,d}] for t≥	$t_{EOP, field}$	If $\alpha = 0$; bac	k to Hypoth	esis A method	
$S_{creep,f} = \frac{C_{\alpha e}}{1+e}$	$-\log(\frac{t}{t})H$	for $t \ge 1 da$	$y; S_{creep,d} =$	$= \frac{C_{\alpha e}}{1+e_{\alpha}} \log(\frac{1}{t_{EC}})$	$\frac{t}{H}$)H fo	$r t \ge t_{EOP, field}$				
In over-consc	olidation (OC	') state :		0 10	, jieu		If $OCR = 1$;	$t_{eOC}=0$		
$S_{creep,f} = \frac{C_{\alpha e}}{1 + e_{c}}$	$-\log(\frac{t+t_{eOC}}{t_o+t_{eOC}})$	H for $t \ge 1$	1 day; S _{creep} ,	$_{d} = \frac{C_{\alpha e}}{1 + e_{0}} \log(\frac{1}{2})$	$\frac{t + t_{eOC}}{t_{EOP, field} + t_{eOC}}$)	H for $t \ge$	$t_{EOP, field}$			
$t_{eOC} = t_o \times 10^{\left[\left(c_{eOC} - c_{e_i}\right)\frac{V}{C_{ec}}\right]} \left(\frac{\sigma_{zOC}}{\sigma_{zp}}\right)^{\frac{C_i}{C_{ec}}} - t_o$ One value of C_a from a NC state is used for all OCR cases (OCR = $\sigma_{zp}^{-} / \sigma_{zp}^{-}$)										
	$C_e = C_r$	C _c	σ_{zp}	$C_{\alpha} = C_{\alpha e}$	$t_o = 1 \text{ day}$	e_0	k	α=0.8]	
	(no unit)	(no unit)	(kPa)	(no unit)	(day)	(no unit)	(m/day)			
$\mathcal{E}_{zp} = \mathcal{E}_{zi} + \frac{1}{1}$	$C_e \log(\frac{\sigma_{z_l}}{\sigma_{z_l}})$	$(m_v = \frac{\Delta}{m_v}); m_v = \frac{\Delta}{m_v}$	$\frac{\mathcal{E}_z}{\mathcal{E}_v}; c_v = -$	k ; Use	$U_{v} = 98\% t$	o find $t_{EOP, f}$	îeld			
. 1	$+e_o \sigma_z$	Δ	σ_z	$\gamma_w m_v$					48	

Example 2:

The thickness of one layer of Hong Kong Marine Clay in seabed under seawater table is 4m with bottom impermeable and top free drainage in 1D straining. The over-consolidation ratio (OCR) is 1 and 1.5 in two cases. A uniform pressure due to sand fill is applied suddenly to cause an increase of vertical stress 20 kPa. The saturated unit weight of the clay is 15 kN/m³. Other parameters are given in the table below. Calculate the average strain, m_{ν} , C_{ν} and final settlement S_f by dividing the layer into 1, 2, 4, and 8 sub-layers and discuss the differences. Use both the simplified Hypothesis B method and Hypothesis A method to calculate the cures of *S* vs log(time) for 100 years.

-		Mid sub-		σ' _{*i} +20	σ' _m (kPa)		ε, after	m,	c_=k/(m_ x r_)
-		layer depth	σ' ₌ (kPa)	kPa (kPa)	(OCR=1)	Ean	20kPa	, (1/kPa)	(m^2/day)
		2	10.38	30.38	10.38	-2p 0	0.187	0.0093	2.074E-03
OCR=1						0	0.187		
00111						Total strain	0.187		
						Settlement:	0.747	(m)	
	Laver=4m.	sub-laver=2	m. OCR=1						
	r í	Mid.cub		σ' +20	σ' (kPa)		e after	m	$c = k/(m \times r)$
		laver depth	σ' (kPo)	kPa (kPa)	(OCR=1)	c	20kPa	(1/kPa)	(m^2/dav)
		1	6 10	25.10	(00ICI) 5.10	c _{zp}	0.275	0.0105	1 9515 02
		3	15.13	35.57	15.57	0	0.273	0.0103	1.0312-03
	L	Ű	10.07	00.01	10.01	0	0.209		
						Total strain	0.209		
						Settlement:	0.837	(m)	
								. /	
	Layer=4m,	sub-layer=1	m, OCR=1				-		
		Mid sub-		σ' _{zi} +20	σ' _{zp} (kPa)		ε _z after	m _v	c _v =k/(m _v x r _w)
		layer depth	σ' _{zi} (kPa)	kPa (kPa)	(OCR=1)	ε _{zp}	20kPa	(1/kPa)	(m ² /day)
		0.5	2.60	22.60	2.60	0	0.377	0.0111	1.743E-03
		1.5	7.79	27.79	7.79	0	0.221		
		2.5	12.98	32.98	12.98	0	0.162		
		3.5	18.17	38.17	18.17	0	0.129		
						Total strain	0.222		
						Settlement:	0.889	(m)	
							0.000	(,	
	li surantari								
	Layer=4m,	sub-layer=0	.5m, OCR	=1	σ' (kPa)	1	c after	m	c=k/(m xr)
	Layer=4m,	sub-layer=0 Mid sub- laver depth	.5m, OCR:	= 1 σ' _{zi} +20 kPa (kPa)	σ' _{zp} (kPa) (OCR=1)		ε _z after 20kPa	m _v (1/kPa)	c _v =k/(m _v x r _w) (m^2/day)
	Layer=4m,	sub-layer=0 Mid sub- layer depth	-5m, OCR σ' _{zi} (kPa)	=1 σ' _{zi} +20 kPa (kPa)	σ' _{zp} (kPa) (OCR=1)	ε _{zp}	ε _z after 20kPa	m _v (1/kPa)	c _v =k/(m _v x r _w) (m ² /day)
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75	-5m, OCR σ' _{zi} (kPa) 1.30 3.89	=1 σ' _{zi} +20 kPa (kPa) 21.30 23.89	σ' _{zp} (kPa) (OCR=1) 1.30 3.89	ε _{zp} 0	ε _z after 20kPa 0.487 0.316	m _v (1/kPa) 0.0115	c _v =k/(m _v x r _w) (m^2/day) 1.684E-03
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1 25	-5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49	=1 κPa (kPa) 21.30 23.89 26.49	σ' _{zp} (kPa) (OCR=1) 1.30 3.89 6.49	ε _{zp} 0 0	ε _z after 20kPa 0.487 0.316 0.245	m _v (1/kPa) 0.0115	c _v =k/(m _v x r _w) (m^2/day) <u>1.684E-03</u>
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08	=1 σ' _{zi} +20 kPa (kPa) 21.30 23.89 26.49 29.08	σ' _{zp} (kPa) (OCR=1) 1.30 3.89 6.49 9.08	ε _{zp} 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202	m _v (1/kPa) 0.0115	c,=k/(m, x r,w) (m^2/day) 1.684E-03
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75 2.25	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08 11.68	=1 σ' _{zi} +20 kPa (kPa) 21.30 23.89 26.49 29.08 31.68	σ' _{zp} (kPa) (OCR=1) 1.30 3.89 6.49 9.08 11.68	ε _{zp} 0 0 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202 0.174	m _v (1/kPa) 0.0115	c _v =k/(m _v x r _w) (m ⁴ 2/day) <u>1.684E-03</u>
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75 2.25 2.75	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08 11.68 14.27	=1	σ' _{zp} (kPa) (OCR=1) <u>1.30</u> <u>3.89</u> <u>6.49</u> <u>9.08</u> <u>11.68</u> 14.27	ε _{zp} 0 0 0 0 0 0 0 0 0 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202 0.174 0.152	m _v (1/kPa) 0.0115	c _v =k/(m _v x r _w) (m^2/day) <u>1.684E-03</u>
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75 2.25 2.75 3.25	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08 11.68 14.27 16.87	=1 x ² _{zi} +20 kPa (kPa) 21.30 23.89 26.49 29.08 31.68 34.27 36.87	σ' _{zp} (kPa) (OCR=1) 1.30 3.89 9.08 11.68 14.27 16.87	ε _{zp} 0 0 0 0 0 0 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202 0.174 0.152 0.136	m _v (1/kPa) 0.0115	c _v =k/(m _v x r _w) (m^2/day) 1.684E-03
	Layer=4m, -	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.5	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08 11.68 14.27 16.87 18.165	=1 or [*] _{zi} +20 kPa (kPa) 21.30 23.89 26.49 29.08 31.68 34.27 36.87 38.165	σ' _{zp} (kPa) (OCR=1) 1.30 3.89 9.08 11.68 14.27 16.87 18.165	ε _{zp} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202 0.174 0.152 0.136 0.129	m, (1/kPa) 0.0115	c,=k/(m, x r _w) (m ⁴ 2/day) <u>1.684E-03</u>
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.5	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08 11.68 14.27 16.87 18.165	=1 or [*] _{zi} +20 kPa (kPa) 21.30 23.89 26.49 29.08 31.68 34.27 36.87 38.165	σ' _{zp} (kPa) (OCR=1) <u>1.30</u> <u>3.89</u> <u>6.49</u> <u>9.08</u> <u>11.68</u> <u>14.27</u> <u>16.87</u> <u>18.165</u>	ε _{zp} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202 0.174 0.152 0.136 0.129 0.230	m, (1/kPa) 0.0115	c _v =k/(m _v x r _w) (m ⁴ 2/day) <u>1.684E-03</u>
	Layer=4m,	sub-layer=0 Mid sub- layer depth 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.5	5m, OCR σ' _{zi} (kPa) 1.30 3.89 6.49 9.08 11.68 14.27 18.165	=1 \[\sigma'_{zi} +20 \[kPa (kPa) 21.30 23.89 26.49 29.08 31.68 34.27 36.87 38.165	σ' _{zp} (kPa) (OCR=1) 1.30 6.49 9.08 11.68 14.27 16.87 18.165	ε _{zp} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ε _z after 20kPa 0.487 0.316 0.245 0.202 0.174 0.152 0.136 0.129 0.230 0.230 0.230	m _v (1/kPa) 0.0115	c,=k/(m _v x r _w) (m ⁴ 2/day) <u>1.684E-03</u>

	Laver=4m	. sub-lave	r=0.5m. O	CR=1							
			, .					β=	0	0.3	1
	Time (yea)	Time (day)	T√=c∿t/d² (1 way drain)	U,	U,*S _f (m)	S _{creen f} (m)	S_creep,d (m)	A Method: S _{totalA} =U _v *S _f + S _{secondary}	B Method 1: S _{totalB} = U _v *S _f +S _{creen}	B Method 2: S _{totalB} = U _v *S _f +S _{creen}	B Method 3: S _{totalB} = U _v *S _f +S _{crean}
	-	1	0.000	. 0.012	0.011	0.000	0.000	0.011	0.011	0.011	0.011
		2	0.000	0.012	0.011	0.000	0.000	0.015	0.011	0.011	0.011
		2	0.000	0.010	0.018	0.000	0.000	0.018	0.015	0.010	0.010
		4	0.000	0.020	0.010	0.033	0.000	0.010	0.045	0.027	0.013
		8	0.001	0.033	0.030	0.063	0.000	0.030	0.081	0.048	0.032
		16	0.002	0.046	0.043	0.084	0.000	0.043	0.110	0.069	0.046
		32	0.003	0.065	0.060	0.105	0.000	0.060	0.145	0.097	0.066
		64	0.007	0.093	0.085	0.126	0.000	0.085	0.186	0.135	0.095
		128	0.013	0.131	0.121	0.148	0.000	0.121	0.239	0.185	0.136
		256	0.027	0.185	0.171	0.169	0.000	0.171	0.305	0.252	0.195
		512	0.054	0.262	0.241	0.190	0.000	0.241	0.393	0.343	0.281
		1024	0.108	0.370	0.341	0.211	0.000	0.341	0.510	0.466	0.403
		1000	0.105	0.366	0.337	0.210	0.000	0.337	0.505	0.461	0.398
		2000	0.210	0.518	0.477	0.231	0.000	0.477	0.661	0.628	0.572
		4000	0.421	0.713	0.656	0.252	0.000	0.656	0.858	0.839	0.800
		7000	0.737	0.868	0.799	0.269	0.000	0.799	1.015	1.006	0.986
		11300	1.189	0.957	0.881	0.284	0.000	0.881	1.108	1.105	1.098
EOP,field	38.597	14088	1.483	0.979	0.901	0.290	0.000	0.901	1.134	1.132	1.129
	45	16425	1.729	0.989	0.910	0.295	0.005	0.915	1.147	1.146	1.144
	50	18250	1.921	0.993	0.914	0.298	0.008	0.922	1.154	1.154	1.153
	80	29200	3.073	1.000	0.920	0.313	0.022	0.942	1.175	1.175	1.175
	100	36500	3.841	1.000	0.921	0.319	0.029	0.949	1.182	1.182	1.182

Layer=4m	n, sub-laye	r=0.5m, O	CR=1.5							
							β=	0	0.3	1
		T√=c√t/d ²					A Method:	B Method 1:	B Method	B Method 3:
Time	Time	(1 way				S creep d	StotalA=Uv*Sf	S _{totalB} =	2: StotalB=	S _{totalB} =
(yea)	(day)	drain)	u.	U.*S, (m)	S	(m)	+ S	U.*S.+S	U.*S.+S	U.*S.+S
<i>a</i> ,	,				creep,r ()	. ,	- secondary	-v -i -cieep	-v -i -cieep	-v -i -cleep
		0.0004	0.0407	0.0000	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000
	1	0.0001	0.0137	0.0090	0.0000	0.0000	0.0090	0.0090	0.0090	0.0090
	2	0.0003	0.0194	0.0127	0.0211	0.0000	0.0127	0.0295	0.0179	0.0130
	3	0.0004	0.0238	0.0155	0.0334	0.0000	0.0155	0.0423	0.0242	0.0162
	4	0.0000	0.0275	0.0179	0.0421	0.0000	0.0179	0.0317	0.0294	0.0108
	16	0.0012	0.0550	0.0234	0.0032	0.0000	0.0234	0.0700	0.0443	0.0273
	32	0.0024	0.0330	0.0508	0.0043	0.0000	0.0508	0.1055	0.0041	0.0573
	64	0.0047	0.0770	0.0300	0.1004	0.0000	0.0300	0.1331	0.0033	0.0373
	128	0.0033	0.1100	0.0710	0.1204	0.0000	0.0710	0.2195	0.1240	0.0023
	256	0.0380	0.1000	0.1010	0.1470	0.0000	0.1010	0.2784	0.2292	0.1732
	512	0.0760	0.3110	0.2031	0.1896	0.0000	0.2031	0.3548	0.3099	0.2503
	1024	0.1519	0.4398	0.2872	0.2107	0.0000	0.2872	0.4558	0.4189	0.3613
	800	0.1187	0.3888	0.2538	0.2032		0.2538	0.4164	0.3763	0.3170
	2048	0.3039	0.6170	0.4029	0.2318	0.0000	0.4029	0.5883	0.5633	0.5173
	2500	0.3710	0.6754	0.4410	0.2379	0.0000	0.4410	0.6313	0.6101	0.5695
	5000	0.7419	0.8701	0.5681	0.2589	0.0000	0.5681	0.7752	0.7667	0.7483
27.699	10110	1.5001	0.9800	0.6399	0.2803	0.0000	0.6399	0.8641	0.8628	0.8596
	14000	2.0774	0.9952	0.6498	0.2902	0.0099	0.6597	0.8839	0.8836	0.8828
50	18250	2.7080	0.9990	0.6522	0.2983	0.0180	0.6702	0.8945	0.8944	0.8942
80	29200	4.3328	1.0000	0.6529	0.3126	0.0322	0.6851	0.9094	0.9094	0.9094
100	36500	5.4160	1.0000	0.6529	0.3194	0.0390	0.6919	0.9162	0.9162	0.9162

Verification 2: Compared to fully coupled modelling results

An "Upper Marine Clay" of 2m is overlaying an "Upper Alluvium" layer of 2m (total thickness 4m). OCR is assumed to be 1.5. A uniform pressure due to sand fill is applied suddenly to cause an increase of vertical stress 20 kPa. Other parameters can be found in Feng and Yin (2017)

Calculate curves of settlement vs log(time) using Hypothesis A method, the new simplified Hypothesis B method, and Plaxis for Case I (2m+2m) and Case I (2m+2m) (impermeable bottom).

$$S_{totalB} = \begin{cases} U_{v}S_{f} + \alpha S_{creep,f} & \text{for } 1 \text{ } day \leq t \leq t_{EOP,field} \\ U_{v}S_{f} + [\alpha U_{v}^{\beta}S_{creep,f} + (1 - \alpha U_{v}^{\beta})S_{creep,d}] & \text{for } t \geq t_{EOP,field} \end{cases}$$

(a) Solution (equations and charts) for one layer:

 $T_{v} = \frac{c_{v}t}{d^{2}}: \quad for \ U_{v} < 0.6; \ T_{v} = \frac{\pi}{4}U_{v}^{2}; U_{v} = \sqrt{\frac{4T_{v}}{\pi}}$ For U > 0.6; $T_v = -0.933 \log(1 - U_v)$; $U_v = 1 - 10^{-\frac{T_v + 0.088}{0.933}}$

(b) Zhu and Yin (1999, 2005) solution (equations and charts) for two layers:

$$U = U_{a}(T, T_{c}) = \begin{cases} \frac{T_{c}}{T} - \sum_{n=1}^{\infty} \frac{C_{n}}{\lambda_{n}^{4} T_{c}} [1 - \exp(-\lambda_{n}^{2} T)] & T \le T_{c} \\ 1 - \sum_{n=1}^{\infty} \frac{C_{n}}{\lambda_{n}^{4} T_{c}} [1 - \exp(-\lambda_{n}^{2} T_{c})] \times \exp[-\lambda_{n}^{2} (T - T_{c})] & T > T_{c} \end{cases}$$

(c) Method by US Department of the Navy (1982) for multiple layers:

$H_1 c_{v1}$		$H' = H = \int a f a h = h = h = h = h = h = h = h = h = h$	-
$H_2 c_{v2}$	$H c_{y1}$	$H_2 = H_2 \sqrt{c_{v1}} / c_{v2}, \dots H_i = H_i \sqrt{c_{v1}} / c_{vi}, \dots H_n = H_n \sqrt{c_{v1}} / c_{vn}$	
$H_i c_{vi}$		$H = H_1 + \sum_{n=1}^{n} H'_i, T_v = c_{v1}t / H^2 \text{ (if one way drainge)}$	
$H_n c_{vn}$	V	2	
			65

6. Conclusions and Remarks

- (a) Hypothesis A method (an old de-coupled method) is wrong and underestimates consolidation settlements of clayey soils.
- (b) Hypothesis B method (a fully coupled method) is correct, but difficult to use (numerical methods, constitutive models, and right software needed).
- (c) The new simplified Hypothesis B method (a new de-coupled method) is easy to use (spread-sheet calculation) and has good accuracy (relative error 0.2% ~ 6%).
- (d) The new general simple method has been verified for different cases without/with vertical drains in layered soils under any staged loading including unloading and reloading.
- (e) The settlements from the general simple method are in good agreement with those from fully coupled method and field measurement.

Attachments

(1) 4 papers by Prof Yin and co-authors:

- Yin, JH and Feng. WQ (2017). A New Simplified Method and Its Verification for Calculation of Consolidation Settlement of a Clayey Soil with Creep. Canadian Geotechnical Journal, Can. Geotech. J. 54 (3), 333–347.
- [2] Feng, WQ and JH Yin (2017). A New Simplified Hypothesis B Method for Calculating Consolidation Settlements of Double Soil Layers Exhibiting Creep. International J for Numerical and Analytical Methods in Geomechanics, 41, 899–917.
- [3] Yin, JH, Chen, ZJ, and Feng, WQ (2022). A General Simple Method for Calculating Consolidation Settlements of Layered Clayey Soils with Vertical Drains under Staged Loadings. Acta Geotechnica.
- [4] Yin, J H. and Graham, J. (1996). Elastic visco-plastic modelling of one-dimensional consolidation. Geotechnique, 1996, 46(3): 515 - 527.

(2) 2 papers and 1 ppt from Degago and Nash:

- Degago, S. A. et al. (2011). Use and misuse of the isotache concept with respect to creep hypotheses A and B. Geotechnique 61, No. 10, 897–908 [http://dx.doi.org/ 10.1680/geot.9.P.112]
- [2] Degago SA (2014). Primary Consolidation and Creep of Clays. A ppt from Norwegian Public Roads Administrations (SVV).
- [3] Nash, D.F.T., and Ryde, S.J. 2001. Modelling consolidation accelerated by vertical drains in soils subject to creep. Geotechnique, 51(3): 257–273. doi:10.1680/geot.2001.51.3.257.
- (3) One Excel file for Examples 1 and 2.